N40 – Acid Base

K_{sp}

N40 – Acid Base

Target: I can perform K_{sp} calculations to determine the solubility of different salts.

K_{sp} Values for Some Salts at 25°C

Name	Formula	K _{sp}
Barium carbonate	BaCO ₃	2.6 x 10 ⁻⁹
Barium chromate	BaCrO ₄	1.2 x 10 ⁻¹⁰
Barium sulfate	BaSO ₄	1.1 x 10 ⁻¹⁰
Calcium carbonate	CaCO ₃	5.0 x 10 ⁻⁹
Calcium oxalate	CaC ₂ O ₄	2.3 x 10 ⁻⁹
Calcium sulfate	CaSO ₄	7.1 x 10 ⁻⁵
Copper(I) iodide	CuI	1.3 x 10 ⁻¹²
Copper(II) iodate	Cu(IO ₃) ₂	6.9 x 10 ⁻⁸
Copper(II) sulfide	CuS	6.0 x 10 ⁻³⁷
Iron(II) hydroxide	Fe(OH) ₂	4.9 x 10 ⁻¹⁷
Iron(II) sulfide	FeS	6.0 x 10 ⁻¹⁹
Iron(III) hydroxide	Fe(OH) ₃	2.6 x 10 ⁻³⁹
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10 ⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO ₄	1.8 x 10 ⁻⁸

Name	Formula	K _{sp}
Lead(II) bromide	PbBr ₂	6.6 x 10 ⁻⁶
Lead(II) chloride	PbCl ₂	1.2 x 10⁻⁵
Lead(II) iodate	Pb(IO ₃) ₂	3.7 x 10 ⁻¹³
Lead(II) iodide	PbI ₂	8.5 x 10 ⁻⁹
Lead(II) sulfate	PbSO₄	1.8 x 10 ⁻⁸
Magnesium carbonate	MgCO ₃	6.8 x 10 ⁻⁶
Magnesium hydroxide	Mg(OH) ₂	5.6 x 10 ⁻¹²
Silver bromate	AgBrO ₃	5.3 x 10⁻⁵
Silver bromide	AgBr	5.4 x 10 ⁻¹³
Silver carbonate	Ag ₂ CO ₃	8.5 x 10 ⁻¹²
Silver chloride	AgCl	1.8 x 10 ⁻¹⁰
Silver chromate	Ag ₂ CrO ₄	1.1 x 10 ⁻¹²
Silver iodate	AgIO ₃	3.2 x 10⁻ ⁸
Silver iodide	AgI	8.5 x 10 ⁻¹⁷
Strontium carbonate	SrCO ₃	5.6 x 10 ⁻¹⁰
Strontium fluoride	SrF ₂	4.3 x 10 ⁻⁹
Strontium sulfate	SrSO ₄	3.4 x 10 ⁻⁷
Zinc sulfide	ZnS	2.0 x 10 ⁻²⁵

Equilibrium constants and ICE Tables.

Only real difference is that your reactant is always a solid so it doesn't show up in the Law of Mass Action.

But that isn't "new" – we've known that forever!

Solubility

We typically describe the solubility in how much solute can you dissolve in how much solvent.

Moles / Liter Grams / Liter Etc...

Always check what units it wants answers in!

Usually represented by "S"

Solving Solubility Problems

For the salt AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$

$Agl(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$		
I	0	0
С	+X	+X
E	×	×

$$Ksp = [Ag^+][I^-]$$

Nothing on the denominator because the reactant was a solid!

 $1.5 \times 10^{-16} = x^2$

 $x = solubility of Agl in mol/L = 1.2 x 10^{-8} M$

Solving Solubility Problems When Not 1:1

For the salt PbCl₂ at 25°C, $K_{sp} = 1.6 \times 10^{-5}$

 $PbCl_2(s) \rightarrow Pb^{2+}(aq) + 2Cl^{-}(aq)$

I	0	0
С	+X	+2x
E	×	2x

Be careful with the stoichiometry!

1.6 x 10⁻⁵ = (x)(2x)² = 4x³ x = solubility of PbCl₂ in mol/L = 1.6 x 10⁻² M What happens to the solubility of a substance if one of its ions is already present in the solution?

Will the solubility increase or decrease????

It decreases!

Let's redo this problem but this time let's have some I- already in the solution. x should For the salt AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ AgI(s) \rightarrow Ag⁺(aq) + I⁻(aq) x = solubility of AgI in mol/L = 1.2 x 10⁻⁸ M

in the solution. x should end up less than 1.2 x 10⁻⁸ mol/L

Solving Solubility with a Common Ion

For the salt AgI at 25°C, $K_{sp} = 1.5 \times 10^{-16}$ What is its solubility in 0.05 M Nal?

 $Agl(s) \rightarrow Ag^{+}(aq) + I^{-}(aq)$

I	0	0.05
С	+X	0.05+x
E	×	0.05+x

5% rule!

 $1.5 \ge 10^{-16} = (x)(0.05+x) \cong (x)(0.05)$

 $x = solubility of Agl in mol/L = 3.0 x 10^{-15} M$

The molar solubility of Pbl_2 is 1.50×10^{-3} M. Calculate the value of K_{sp} for Pbl_2 .

3.38E⁻⁹ 4.50E⁻⁶ B 1.35E⁻⁸ C 1.50E⁻³ none of these E

The molar solubility of Pbl_2 is 1.50×10^{-3} M. Calculate the value of K_{sp} for Pbl_2 .

Complex ion - a charged species composed of:

- 1. A metallic cation
- 2. Ligands

Ligand – Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation

NH₃, CN⁻, and H₂O are Common Ligands

NOTE A lot of Lewis acids/bases act as ligands. They are often involved in solubility problems, which is why we tend to put Ksp in the Acid Base chapter and not always Equilibrium chapter.

Coordination Number

Coordination number

The number of ligands attached to the cation

• 2, 4, and 6 are the most common coordination numbers

Coordination #	Example(s)
2	$Ag(NH_3)_2^+$
4	$CoCl_{4}^{2-}$ $Cu(NH_{3})_{4}^{2+}$
6	$Co(H_2O)_6^{2+}$ $Ni(NH_3)_6^{2+}$

Complex Ions and Solubility

$$AgCl(s) = Ag^{+} Cl^{-} \qquad K_{sp} = 1.6 \times 10^{-10}$$

$$Ag^{+} NH_{3} = Ag(NH_{3})^{+} \qquad K_{1} = 2.1 \times 10^{3}$$

$$Ag(NH_{3})^{+} NH_{3} = Ag(NH_{3})_{2}^{+} \qquad K_{2} = 8.2 \times 10^{3}$$

$$AgCl + 2NH_{3} = Ag(NH_{3})_{2}^{+} + Cl^{-} \qquad K = K_{sp} \cdot K_{1} \cdot K_{2}$$

$$K = 2.8 \times 10^{-3} = \frac{[Ag(NH_{3})_{2}^{+}][Cl^{-}]}{[NH_{3}]^{2}}$$

Practice to Glue In

[14] When solid BaF₂ is added to H₂O the following equilibrium is established.

$$BaF_2(s) \longrightarrow Ba^{2+}(aq) + 2 F(aq)$$
 $K_{sp} = 1.5 \times 10^{-6} at 25 °C$

- a. Calculate the molar solubility of barium fluoride at 25 °C.
- b. Explain how adding each of the following substances affects the solubility of BaF₂ in water.
 - i. 0.10 M Ba(NO₃)₂
 - ii. 0.10 M HNO3
- c. In an experiment to determine the K_{sp} of PbF₂ a student starts with 0.10 M Pb(NO₃)₂ and 0.10 M KF and uses the method of serial dilutions to find the lowest [Pb²⁺] and [F⁻] that form a precipitate when mixed. If the student uses the concentration of the ions in the combined solution to determine K_{sp} , will the value of K_{sp} calculated be too large, too small or just right? Explain.

 $K_{\rm sp}$ for PbF₂ = 4.0 × 10⁻⁸

d. i. In a solution of 0.010 M barium nitrate and 0.010 M lead(II) nitrate, which will precipitate first, BaF₂ or PbF₂, as NaF(s) is added? Assume volume changes are negligible. Explain (support your answer with calculations).

ii. When the more soluble fluoride begins to precipitate, what is the concentration of the cation for the less soluble fluoride that remains in solution?

- a. If $S = \text{molar solubility of } BaF_2$ (s), then $[Ba^{2+}] = S$, $[F^-] = 2S$ $K_{sp} = [Ba^{2+}][F^-]^2 = (S)(2S)^2 = 4S^3 = 1.5 \times 10^{-6}$ S = 0.00721 mol/L
- b. i. Adding Ba²⁺ ion will decrease the molar solubility of BaF₂ due to the common ion effect.
 ii. Adding H⁺ will increase the molar solubility of BaF₂ as the F⁻ ion will react with H⁺ to form HF, thereby causing more BaF₂ to dissolve by Le Chatelier's Principle.
- c. The calculated K_{sp} will be too large because the student is relying on seeing the formation of a precipitate at the moment that Q exceeds K_{sp}. The student will miss the exact moment that happens, so the calculated value of K_{sp} will be too large.
 Other possible issues: Protolysis will decrease the concentration of fluoride, so more fluoride will need to be added to cause precipitation; therefore measured K_{sp} will be too large. Likewise, some complex ions such as PbF⁺ or PbF₂ (aq) may form, again leading to an experimental value that is too large.

- d. i. As both BaF₂ and PbF₂ are 1:2 compounds, and the concentrations of the metal ions are both 0.010 M, you can tell that PbF₂ will precipitate first, because it has the lower K_{sp}. For calculations to support this: For PbF₂, 4.0 x 10⁻⁸ = (0.01)[F⁻]² [F⁻]² = 4.0 x 10⁻⁶ [F⁻] = 2.0 x 10⁻³ M For BaF₂, 1.5 x 10⁻⁶ = (0.01)[F⁻]² [F⁻]² = 1.5 x 10⁻⁴ [F⁻] = 1.2 x 10⁻² M The PbF₂ will precipitate first because a lower value for the concentration of fluoride is needed.
 - ii. From part (i) we know that the BaF₂ precipitates second, when the [F⁻] reaches 1.2 x 10^{-2} M Since PbF₂ (s) is present, then [Pb²⁺][F⁻]² = $K_{sp} = 4.0 \times 10^{-8}$ [Pb²⁺](1.2 x 10^{-2})² = 4.0×10^{-8} [Pb²⁺] = 2.8×10^{-4} M

YouTube Link to Presentation

WWW.