N40 - Acid Base
$K_{\text {sp }}$

N40 - Acid Base

Target: I can perform K_{sp} calculations to determine the solubility of different salts.

$\underline{K}_{\underline{p} p}$ Values for Some Salts at $25^{\circ} \mathrm{C}$

Name	Formula	$\mathrm{K}_{\text {sp }}$
Barium carbonate	BaCO_{3}	2.6×10^{-9}
Barium chromate	BaCrO_{4}	1.2×10^{-10}
Barium sulfate	BaSO_{4}	1.1×10^{-10}
Calcium carbonate	CaCO_{3}	5.0×10^{-9}
Calcium oxalate	$\mathrm{CaC}_{2} \mathrm{O}_{4}$	2.3×10^{-9}
Calcium sulfate	CaSO_{4}	7.1×10^{-5}
Copper(I) iodide	CuI	1.3×10^{-12}
Copper(II) iodate	$\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$	6.9×10^{-8}
Copper(II) sulfide	CuS	6.0×10^{-37}
Iron(II) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{2}$	4.9×10^{-17}
Iron(II) sulfide	FeS	6.0×10^{-19}
Iron(III) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{3}$	2.6×10^{-39}
Lead(II) bromide	PbBr_{2}	6.6×10^{-6}
Lead(II) chloride	PbCl_{2}	1.2×10^{-5}
Lead(II) iodate	$\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$	3.7×10^{-13}
Lead(II) iodide	PbI_{2}	8.5×10^{-9}
Lead(II) sulfate	PbSO_{4}	1.8×10^{-8}

Name	Formula	$\mathrm{K}_{\text {sp }}$
Lead(II) bromide	PbBr_{2}	6.6×10^{-6}
Lead(II) chloride	PbCl_{2}	1.2×10^{-5}
Lead(II) iodate	$\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$	3.7×10^{-13}
Lead(II) iodide	PbI_{2}	8.5×10^{-9}
Lead(II) sulfate	PbSO_{4}	1.8×10^{-8}
Magnesium carbonate	MgCO_{3}	6.8×10^{-6}
Magnesium hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$	5.6×10^{-12}
Silver bromate	AgBrO_{3}	5.3×10^{-5}
Silver bromide	AgBr	5.4×10^{-13}
Silver carbonate	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	8.5×10^{-12}
Silver chloride	AgCl	1.8×10^{-10}
Silver chromate	$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.1×10^{-12}
Silver iodate	AgIO_{3}	3.2×10^{-8}
Silver iodide	AgI	8.5×10^{-17}
Strontium carbonate	SrCO_{3}	5.6×10^{-10}
Strontium fluoride	SrF_{2}	4.3×10^{-9}
Strontium sulfate	SrSO_{4}	3.4×10^{-7}
Zinc sulfide	ZnS	2.0×10^{-25}

Mostly Review!

Equilibrium constants and ICE Tables.
Only real difference is that your reactant is always a solid so it doesn't show up in the Law of Mass Action.

But that isn't "new" - we've known that forever!

Solubility

We typically describe the solubility in how much solute can you dissolve in how much solvent.

Moles / Liter
Grams / Liter Etc...

Always check what units it wants answers in!
Usually represented by "S"

Solving Solubility Problems

For the salt Agl at $25^{\circ} \mathrm{C}, \mathrm{K}_{\text {sp }}=1.5 \times 10^{-16}$

$\boldsymbol{K s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{I}^{-}\right]$
Nothing on the denominator because the reactant was a solid!
$1.5 \times 10^{-16}=x^{2}$
$x=$ solubility of Agl in $\mathrm{mol} / \mathrm{L}=1.2 \times 10^{-8} \mathrm{M}$

Solving Solubility Problems When Not 1:1

For the salt PbCl_{2} at $25^{\circ} \mathrm{C}, \mathrm{K}_{\text {sp }}=1.6 \times 10^{-5}$ $\mathrm{PbCl}_{2}(\mathrm{~s}) \rightarrow \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{Cl}-(\mathrm{aq})$

I	O	O
C	$+x$	$+2 x$
E	x	$2 x$

Be careful with the stoichiometry!

$$
1.6 \times 10^{-5}=(x)(2 x)^{2}=4 x^{3}
$$

$x=$ solubility of PbCl_{2} in $\mathrm{mol} / \mathrm{L}=1.6 \times 10^{-2} \mathrm{M}$

Common Ion Effect

What happens to the solubility of a substance if one of its ions is already present in the solution?

Will the solubility increase or decrease????

It decreases!

Let's redo this problem but this time let's have some I- already in the solution. x should end up less than $1.2 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$

Solving Solubility with a Common Ion

For the salt Agl at $25^{\circ} \mathrm{C}, \mathrm{K}_{\text {sp }}=1.5 \times 10^{-16}$ What is its solubility in 0.05 M Nal ?

$$
\begin{aligned}
& 1.5 \times 10^{-16}=(x)(0.05+x) \cong(x)(0.05) \\
& x=\text { solubility of } \mathrm{Agl} \text { in } \mathrm{mol} / \mathrm{L}=3.0 \times 10^{-15} \mathrm{M}
\end{aligned}
$$

The molar solubility of Pbl_{2} is $1.50 \times 10^{-3} \mathrm{M}$. Calculate the value of $K_{\text {sp }}$ for PbI_{2}.
(A) $3.38 \mathrm{E}^{-9}$

B $4.50 \mathrm{E}^{-6}$
C $1.35 \mathrm{E}^{-8}$
D $1.50 \mathrm{E}^{-3}$
E none of these

The molar solubility of Pbl_{2} is $1.50 \times 10^{-3} \mathrm{M}$.
Calculate the value of $K_{\text {sp }}$ for PbI_{2}.
(A) $3.38 \mathrm{E}^{-9}$

$\mathrm{PbI}_{2(\mathrm{~s})}$	\leftrightarrow	$\mathrm{Pb}^{2+}(\mathrm{aq})$	+	2l $^{-}(\mathrm{aq})$
-	0	0		
-	$+x$	$+2 x$		

$$
\begin{gathered}
K s p=(x)(2 x)^{2} \\
K s p=4(x)^{3} \\
K s p=4\left(1.5 \times 10^{-3}\right)^{3}
\end{gathered}
$$

$$
K s p=1.35 \times 10^{-8}
$$

Precipitation and Qualitative Analysis

Solution of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Pb}^{2+}$

Add cold $\mathrm{HCl}(\mathrm{aq})$

Precipitate of
$\mathrm{AgCl}(\mathrm{s}), \mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s}), \mathrm{PbCl}_{2}(\mathrm{~s})$

FYI - Complex Ions

Complex ion - a charged species composed of:

1. A metallic cation
2. Ligands

Ligand - Lewis bases that have a lone electron pair that can form a covalent bond with an empty orbital belonging to the metallic cation

$\mathrm{NH}_{3} \mathbf{C N}^{-}$, and $\mathrm{H}_{2} \mathrm{O}$ are Common Ligands

NOTE A lot of Lewis acids/bases act as ligands. They are often involved in solubility problems, which is why we tend to put Ksp in the Acid Base chapter and not always Equilibrium chapter.

Coordination Number

Coordination number

The number of ligands attached to the cation

- 2, 4, and 6 are the most common coordination numbers

Coordination \#	Example(s)
2	$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}$
4	$\mathrm{CoCl}_{4}{ }^{2-} \quad \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$
6	$\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+} \quad \mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}$

Complex Ions and Solubility

$$
\mathrm{AgCl}(s) \leftrightarrows \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \quad \mathrm{K}_{\mathrm{sp}}=1.6 \times 10^{-10}
$$

$$
\mathrm{Ag}^{\prime}+\mathrm{NH}_{3} \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+} \quad \mathrm{K}_{1}=2.1 \times 10^{3}
$$

$\mathrm{Ag}\left(\mathrm{NH}_{3}\right)^{+} \mathrm{NH}_{3} \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+} \quad \mathrm{K}_{2}=8.2 \times 10^{3}$
$\mathrm{AgCl}+2 \mathrm{NH}_{3} \leftrightarrows \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}{ }^{+}+\mathrm{Cl}^{-} \quad \mathrm{K}=\mathrm{K}_{\mathrm{sp}} \cdot \mathrm{K}_{1} \cdot \mathrm{~K}_{2}$

$$
K=2.8 \times 10^{-3}=\frac{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{\left[\mathrm{NH}_{3}\right]^{2}}
$$

Practice to Glue In

[14] When solid BaF_{2} is added to $\mathrm{H}_{2} \mathrm{O}$ the following equilibrium is established.

$$
\mathrm{BaF}_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Ba}^{2+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \quad K_{\mathrm{sp}}=1.5 \times 10^{-6} \text { at } 25^{\circ} \mathrm{C}
$$

a. Calculate the molar solubility of barium fluoride at $25^{\circ} \mathrm{C}$.
b. Explain how adding each of the following substances affects the solubility of BaF_{2} in water.
i. $0.10 \mathrm{M} \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
ii. $0.10 \mathrm{M} \mathrm{HNO}_{3}$
c. In an experiment to determine the $K_{\text {sp }}$ of PbF_{2} a student starts with $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and 0.10 M KF and uses the method of serial dilutions to find the lowest $\left[\mathrm{Pb}^{2+}\right]$ and $\left[\mathrm{F}^{-}\right]$that form a precipitate when mixed. If the student uses the concentration of the ions in the combined solution to determine $K_{\text {sp }}$, will the value of $K_{\text {sp }}$ calculated be too large, too small or just right? Explain.
$K_{\text {sp }}$ for $\mathrm{PbF}_{2}=4.0 \times 10^{-8}$
d. i. In a solution of 0.010 M barium nitrate and 0.010 M lead(II) nitrate, which will precipitate first, BaF_{2} or PbF_{2}, as $\mathrm{NaF}(\mathrm{s})$ is added? Assume volume changes are negligible. Explain (support your answer with calculations).
ii. When the more soluble fluoride begins to precipitate, what is the concentration of the cation for the less soluble fluoride that remains in solution?

Key

a. If $S=$ molar solubility of $\mathrm{BaF}_{2}(\mathrm{~s})$, then $\left[\mathrm{Ba}^{2+}\right]=S,[\mathrm{~F}]=2 S$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right][\mathrm{F}]^{2}=(S)(2 S)^{2}=4 S^{3}=1.5 \times 10^{-6}$
$S=0.00721 \mathrm{~mol} / \mathrm{L}$
b. i. Adding Ba^{2+} ion will decrease the molar solubility of BaF_{2} due to the common ion effect.
ii. Adding H^{+}will increase the molar solubility of BaF_{2} as the F^{-}ion will react with H^{+}to form HF , thereby causing more BaF_{2} to dissolve by Le Chatelier's Principle.
c. The calculated K_{sp} will be too large because the student is relying on seeing the formation of a precipitate at the moment that Q exceeds K_{sp}. The student will miss the exact moment that happens, so the calculated value of K_{sp} will be too large.
Other possible issues: Protolysis will decrease the concentration of fluoride, so more fluoride will need to be added to cause precipitation; therefore measured $\mathrm{K}_{\text {sp }}$ will be too large. Likewise, some complex ions such as PbF^{+}or $\mathrm{PbF}_{2}(\mathrm{aq})$ may form, again leading to an experimental value that is too large.

Key

d. i. As both BaF_{2} and PbF_{2} are 1:2 compounds, and the concentrations of the metal ions are both 0.010 M , you can tell that PbF_{2} will precipitate first, because it has the lower K_{sp}. For calculations to support this: For $\mathrm{PbF}_{2}, \quad 4.0 \times 10^{-8}=(0.01)[\mathrm{F}]^{2} \quad[\mathrm{~F}]^{2}=4.0 \times 10^{-6} \quad[\mathrm{~F}]=2.0 \times 10^{-3} \mathrm{M}$ For $\mathrm{BaF}_{2}, \quad 1.5 \times 10^{-6}=(0.01)\left[\mathrm{F}^{-}\right]^{2} \quad\left[\mathrm{~F}^{-}\right]^{2}=1.5 \times 10^{-4} \quad\left[\mathrm{~F}^{-}\right]=1.2 \times 10^{-2} \mathrm{M}$ The PbF_{2} will precipitate first because a lower value for the concentration of fluoride is needed.
ii. From part (i) we know that the BaF_{2} precipitates second, when the [F$]$ reaches $1.2 \times 10^{-2} \mathrm{M}$

Since PbF_{2} (s) is present, then $\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}=K_{\text {sp }}=4.0 \times 10^{-8}$

$$
\begin{aligned}
& {\left[\mathrm{Pb}^{2+}\right]\left(1.2 \times 10^{-2}\right)^{2}=4.0 \times 10^{-8}} \\
& {\left[\mathrm{~Pb}^{2+}\right]=2.8 \times 10^{-4} \mathrm{M}}
\end{aligned}
$$

YouTube Link to Presentation

WWW.

